Alkanes

1.	Under suitable conditions, butane, C ₄ H ₁₀ , reacts with chlorine by radical substitution. A mixture o
	organic compounds is formed, including C_4H_9CI , and compounds ${\bf D}$ and ${\bf E}$.

İ.	Complete the table below to show the mechanism for the initiation and propagation
	stages of the reaction of C ₄ H ₁₀ with chlorine to form C ₄ H ₉ C <i>I</i> .

In your equations, use molecular formulae and 'dots' (·) with any radicals.

Initiation	Equation Conditions
Propagation	→

ii. Organic compound **D** is formed by substitution of **all** the H atoms in butane by C/ atoms.
 Write the equation for the formation of compound **D** from butane.
 Use molecular formulae.

iii. Organic compound **E** is formed by the substitution of **some** of the H atoms in butane by C/ atoms.

A chemist found that 0.636 g of compound $\bf E$ has a volume of 78.0 cm³. Under the conditions used, the molar gas volume is 32.5 dm³ mol⁻¹.

Determine the molecular formula of compound ${\bf E}.$

molecular formula =[3]

[3]

2(a). This question is about saturated hydrocarbons.

Compounds **A**, **B** and **C** are saturated hydrocarbons. The structures and boiling points of **A**, **B** and **C** are shown below.

	Isomer	Boiling point /°C
A		36
В		28
С	X	9

•	Use the structures to explain what is meant by the term structural isomer.	
•	Explain the trend in boiling points shown by A , B and C in the table.	
		[5

Compounds A, B and C all react with chlorine in the presence of ultraviolet radiation to form

_____[1]

Complete the table to show the number of structural isomers of $C_5H_{11}C/$ that could be

organic compounds with the formula $C_5H_{11}CI$.

Name the mechanism for this reaction.

formed from the reaction of chlorine with A and B.

3.

	Α	В
Number of structural isomers		

[2]

iii.	The reaction of	f compound 🗛	with e	excess (chlorine	forms a	compound	D , which	า has a
	molar mass of	175.5 g mol ⁻	1.						

	qualio	····
Equation	quatio	
Equation	guatio	on
Compound D		
Compound D		
quation	quatio	on

iv.	Write two equations to show the propagation steps in the mechanism for this reaction.
	Use dots,•, to show the unpaired electrons on radicals.
	[2
٧.	Draw the displayed formula of the radical formed in the first propagation step.
	Use a dot,•, to show the position of the unpaired electron.
vi.	Further substitution forms a mixture of organic products.
	Draw the structure of an organic product formed from 2-chloropropanoic acid by further substitution.
At room	n temperature and pressure, the first four members of the alkanes are all gases but the
	r alcohols are all liquids.
Explair	this difference in terms of intermolecular forces.
	[2

i. Construct an equation	on for the complete combustion	of octane C ₈ H ₁₈ .
	· 	
ii. Combustion of 36.48	8 g of octane produced 2.50 mo	l of carbon dioxide.
Show that this comb	oustion was incomplete.	
his question is about cyclic	organic compounds.	
		Boiling point / °C
he table shows some inforn	nation about cycloalkanes.	Boiling point / °C
The table shows some inform	nation about cycloalkanes.	
Cyclopropane	nation about cycloalkanes.	-33
Cycloalkane Cyclopropane Cyclopentane	nation about cycloalkanes.	-33 49
Cycloalkane Cyclopropane Cyclopentane Cyclohexane	nation about cycloalkanes.	-33 49 81
Cycloalkane Cyclopropane Cyclopentane Cyclohexane Cyclohexane	Skeletal formula	-33 49 81
Cycloalkane Cyclopropane Cyclopentane Cyclohexane Cyclohexane Chese cycloalkanes are memormula. i. What is meant by the	Skeletal formula Skeletal formula here of the same homologous s	-33 49 81 series and have the same ge
Cycloalkane Cyclopropane Cyclopentane Cyclohexane Cyclohexane Chese cycloalkanes are memormula. i. What is meant by the	Skeletal formula Skeletal formula hbers of the same homologous series?	-33 49 81 series and have the same ge
Cycloalkane Cyclopropane Cyclopentane Cyclohexane hese cycloalkanes are memormula. i. What is meant by th	Skeletal formula Skeletal formula hbers of the same homologous series?	-33 49 81 series and have the same ge

	ii.	State the	general formula for these cycloalkanes.	
	iii.	Explain th	ne increase in boiling points of the cycloalkanes shown in the table.	<u>[1</u>]
				2]
(b).	The C-	-C-C bond	angles in cyclohexane are 109.5°.	
	State a	and explain	the shape around each carbon atom in cyclohexane.	
	shape			
	explan			
			[2	2]
(c).	In the p	oresence of	f ultraviolet radiation, cyclohexane reacts with bromine.	
	A mixtu	ure of cyclic	organic compounds is formed, including C ₆ H ₁₁ Br.	
	i.		e the table below to show the mechanism of the reaction between bromine an ane to form $C_6H_{11}Br$.	nd
		Include a	ıll possible termination steps in your answer.	
		Step	Equation	
	Initiati	on		
	Propa	gation		
	Termin	nation		
			[5]	

	ii.	The initiation step involves homolytic fission.			
		Explain why the initiation step is an example of homolytic fission.			
			[1]		
(d).	The reaction between cyclohexane and bromine in (f) also forms $C_6H_{10}Br_2$.				
	i.	Write an equation, using molecular formulae, for the reaction of cyclohexane and bromine in the presence of ultraviolet radiation to form $C_6H_{10}Br_2$.			
			[1]		
	ii.	Name one of the structural isomers of $C_6H_{10}Br_2$ formed in the reaction between cyclohexane and bromine.			
			[1]		

7. A student carries out the following experiment to investigate the reaction between hexane and chlorine. The chlorine is made by reaction of aqueous sodium chlorate(I) with dilute hydrochloric acid.

Procedure	Observations
1 cm ³ of hexane is mixed with 1 cm ³ dilute aqueous sodium chlorate(I) in a test-tube.	The mixture forms two colourless layers.
1 cm³ dilute hydrochloric acid is slowly added to the mixture.	The acid mixes with the lower layer, which turns a pale green colour.
The tube is then stoppered and shaken.	The pale green colour moves to the upper layer, leaving the lower layer colourless.
The tube is placed under a bright light and shaken at regular intervals for about 10 minutes. The stopper is loosened regularly to release any pressure.	The pale green colour slowly disappears leaving two colourless layers after about 10 minutes.

The reaction of hexane with chlorine took place when the bright light was switched on.

i. Give the skeletal formula of **one** possible organic product of this reaction.

	e, C_4H_{10} , is a highly flammable gas, used as a fuel for camping stoves. Butane reacts with as in the equation below: $C_4H_{10}(g)+6.5O_2(g)\rightarrow 4CO_2(g)+5H_2O(I)$
i.	The use of portable heaters in enclosed spaces can result in potential dangers if incomplete combustion takes place. Explain the potential danger of incomplete combustion.
ii.	A portable heater is lit to heat a room. The heater burns 600 g of butane and consumes 1.50 m³ of O₂, measured at room temperature and pressure. Determine whether this portable heater is safe to use. Show all your working.
	conclusion, with reason:
	uestion is about alkenes.
This q	
Propei	he, drawn below, contains both σ - and π -bonds. The C-H and C-C single bonds are σ -The C=C double bond is made up of a σ -bond and a π -bond.

	ii.	State the bond angle and shape around each carbon atom of the C=C double bond in propene.			
		bond angle:			
		shape:			
			[1]		
10.	This qu	uestion looks at alkanes.			
	Ethane reacts with chlorine by radical substitution.				
	Describe fully, with equations, the mechanism for this reaction.				
			[5]		

END OF QUESTION PAPER